
University of Wisconsin-Madison CS 638 Web Programming

Lecture 5 – HTTP

1. Browser initiates TCP
connection to server on port 80

2. Server accepts connection

3. Browser sends through the
connection an HTTP request with
the URL of the document

HTTP or the hypertext transfer protocol is the protocol used for transferring data between
web clients and web servers. It has been standardized by the organization responsible for
Internet standards, IETF (Internet
Engineering Task Force). Unlike XHTML
and CSS which are still being extended and
updated, HTTP has undergone little change
in the last decade. The current version is
HTTP 1.1 and it has been described in RFC
2068 from 1997 updated by RFC 2616 from
1999 (IETF standards are called RFCs and
each has a number it is known by).

4. Server receives request, reads
web page from disk, and puts it
inside a reply message it sends to
the browser

Structure of HTTP interactions

HTTP uses TCP (transmission control
protocol) which is a reliable connection-
oriented service supported by the Internet.
After the TCP connection is set up, both
ends can send data to each other. An
application can send data on a TCP
connection using the same methods as for
writing to files, and it can receive data using
the same methods as for reading from files.
If either the client or the server crashes
while the TCP connection is open, TCP
signals an error at the other end.

5. Browser receives page, renders
it, realizes that the page includes
two images stored on the server

6. Browser sends server request
for first image

7. Browser sends server request
for second image

8. Server receives request for first
image and sends reply with the
image

TCP allows a computer to run multiple
services. When handling an incoming
connection request for such computers, TCP
needs to determine which service the client
wants to use. TCP uses port numbers to
solve this problem. This solution is akin to
the use of telephone extensions to route
incoming calls for a large organization
where the caller enters the extension to
select the party he wants to talk with. By
default HTTP uses port 80, but it is possible
to instruct the web server application to
accept connections on a different port.
URLs can encode alternative port numbers
after the server name. For example the URL
http://www.xyz.com:8080/file.html

9. Server receives request for
second image and sends reply
with the image

10. Browser receives first image
and re-renders the page

11. Browser receives second
image and re-renders the page

12. Browser closes connection

13. Server closes connection

Figure 1: Possible HTTP interaction

Cristian Estan and Perry Kivolowitz, last updated on 9/12/2007 1/5

University of Wisconsin-Madison CS 638 Web Programming

instructs the browser to open the TCP connection to server www.xyz.com on port 8080.

HTTP is a stateless request-response protocol. A separate request is made for each
HTML document, style sheet, and image. While multiple requests to the same server can
use the same TCP connection to avoid the overhead of setting up a new connection for
each request, the requests themselves are handled independently by the server. Note that
treating images and style sheets as separate objects as opposed to as components of the
web page has advantages. If multiple pages on the same site use the same style sheet or
common images (e.g. the logo of the company), the browser does not need to get them
again from the server when a second page is visited, it can use a cached copy of the
image or style sheet that it downloaded with the first page. The previous page has an
example of a possible timeline for a browser using HTTP to download a web page that
uses two images from a web server. Note that images on a web page can be on different
servers than the HTML document itself, in which case the browser would use separate
TCP connections.

HTTP requests

HTTP also prescribes the exact format for the request and reply messages used by the
browser and the server. HTTP uses a simple and flexible text-based format. Requests
consist of a request line, followed by a number of header lines and for some types of
requests by the body of the request.

GET /~estan/examples/Bucky.html HTTP/1.1
Host: pages.cs.wisc.edu
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) …
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,…
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://pages.cs.wisc.edu/~estan/examples/

Figure 2: An actual HTTP request for URL http://pages.cs.wisc.edu/~estan/examples/Bucky.html

The request line consists of the HTTP command, a URL, and protocol version separated
by spaces. The two most important HTTP commands (also called HTTP methods) are
GET and POST (to be discussed later). The GET command is for getting documents from
the server and it is followed by header lines followed by two new lines (an extra empty
line). Most header lines are optional and many are to be used only in special
circumstances, but some are used quite often. For both HTTP requests and responses
header lines often carry metadata (information about the document or the request) and

Cristian Estan and Perry Kivolowitz, last updated on 9/12/2007 2/5

University of Wisconsin-Madison CS 638 Web Programming

context information that helps clients and servers work together well despite a wide
variety of configurations, versions, and supported capabilities. Figure 2: An actual HTTP
request for URL http://pages.cs.wisc.edu/~estan/examples/Bucky.html shows an actual
HTTP GET request with all the header fields (some truncated). Most of the header lines
in this request convey information about the browser that allows the server to customize
its reply. For example if a page is available in multiple languages, the server can pick the
one that fits best the client’s preference. The client also specifies the formats, character
sets, and compression methods it prefers. The User-Agent: line tells the server about the
specific implementation of the client. The server may have multiple versions of the page,
each customized for a given browser and this field can be used to select between them.
This field also presents a valuable source of information that allows the server to track
what browsers are popular among the people interested in the site. The Referer: header
line is an important source of information about how the site is used as it holds the URL
of the document from which the user arrived to the document being requested.

HTML forms generate (field-name,field-value) pairs that can be submitted to the server
using either GET or POST. These two commands submit data to the server differently
and they are to be used in different situations. GET is for retrieving data, so it should be
used when submitting data that is meant just to help the server locate the information one
wants (e.g. the coordinates for the portion of a map one wants to view online). POST is
for sending data that will result in a change at the server (e.g. submitting your credit card
number to a shopping site or updating your email or snail mail address in your bank’s
database). HTTP requests using the GET command do not have a separate position for
the (field-name,field-value) pairs. These pairs are appended to the URL portion of the
HTTP command line as follows. The first part of the URL points to the program on the
server that must handle the submitted data, and it is followed by a list of pairs of the form
field-name=field-value. The pairs in the list are separated by the & character, and the URL
is separated from the list by the ? character. For example one can use the URL
http://maps.com/streetmaps?x=43N&y=89W&zoom=large to submit the zoom level
and the x and y coordinates to a fictitious map-vieweing site. Note that there is a problem
when the field names or the field values contain special characters such as space (because
URLs cannot contain spaces and the server interprets the word after the space in the URL
as the version of HTTP to be used), ?, &, =, newline, and a few other characters. The URL
encoding rules mandate that the escape character % be used followed by two hexadecimal
digits indicating the character being escaped. For example %20 stands for space and %3f
stands for the ? character.

The POST command of HTTP is for sending data to the server. Unlike GET requests,
POST requests also have a body that follows after the two new lines that end the header
line portion of the request. HTML forms can choose whether the data the user fills in is
submitted using GET or POST commands. The formatting of the (field-name,field-value)
pairs is not significantly different for the two cases, but for the POST request they do not
follow the URL, but appear in the body. The POST command is not restricted to using
such pairs in the body of the request, any type of data can be submitted as long as the
client and the program handling it on the server agree on how it should be handled. For

Cristian Estan and Perry Kivolowitz, last updated on 9/12/2007 3/5

University of Wisconsin-Madison CS 638 Web Programming

example many web services submit XML-encoded requests in the body of HTTP POST
requests.

Another HTTP command is HEAD. It works exactly like GET, except that the server is
not expected to return the actual document in response to it, but just the header lines that
the reply would normally contain. It is often used to check whether a hyperlink is valid or
whether the document it points to has been modified recently.

HTTP replies

The web server responds to HTTP requests with HTTP replies. These consist of the status
line, header lines, and in most cases the body of the reply. The status line has the version
of the protocol used by the
server, a status code and a
textual explanation of the
meaning of the code. The
possible codes and their
meanings are specified in
RFC 2616. The most
common codes are 200 OK
which indicates the
successful completion of the
request and 404 Not Found
indicating that the server
does not have a page with the
URL in the request. Other
codes indicate that the
requested document was
moved to another URL, that
the user does not have
permission to view the
requested document, or various er

HTTP/1.1 200 OK
Date: Tue, 21 Aug 2007 22:34:19 GMT
Server: Apache
Last-Modified: Thu, 08 Feb 2007 01:24:28 GMT
ETag: "64018364-187-e77d8b00"
Accept-Ranges: bytes
Content-Length: 391
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html

<TITLE>Bucky Badger's web page</TITLE>
<BODY>
…

Most of the reply header lines are
from different sites to have very d
specifies the date the document w
whether the cached version of a d
Encoding line specifies how the b
web pages or XML documents to
the browser claims to support in t
The Content-Type field specifies
method for naming various types
Mail Extensions) has been develo
described in RFCs 2045 and 2046
The most common types are text
(which has sub-types such as gif

Cristian Estan and Perry Kivolow
</BODY>
ror conditions that may occur.

Figure 3: The reply to the request from Figure 2: An actual
HTTP request for URL

 optional and it is not uncommon for two responses
ifferent header lines. The Last-Modified header line
as last modified. This information is useful for deciding
ocument is the most recent one or not. The Content-
ody of the message is encoded. It is not uncommon for

 be compressed (using one of the compression methods
he Accept-Encoding header line of the HTTP request).
 the type of the document in the body of the reply. The
of documents is called MIME (Multipurpose Internet
ped for email and later adopted by the web. MIME is
. MIME types consist of a main type and a sub-type.
 (which includes html and plain as sub-types), image
 and jpeg), audio, video, and application which

itz, last updated on 9/12/2007 4/5

University of Wisconsin-Madison CS 638 Web Programming

specifies in the sub-type the name of the application that should be used to interpret the
document. Note that the browser does not rely on file name extensions to determine how
to interpret the body of the document (but the web server often relies on them to
determine what MIME type to set in the Content-type header line of the reply).

The firebug add-on allows you to see the actual HTTP requests and replies for your
browser including the header lines. This is a useful debugging tool and it can help you
understand more about how HTTP works in practice.

HTTP header lines used for authentication

HTTP also has header lines for user authentication. If the web server is configured to
require authentication for a site, the reply for the first request from a user will not contain
the document, but a code indicating that authorization is required. The browser pops up a
dialog asking the user for a user name and a password. Next the browser re-submits the
request with an Authorization: header line that contains the user name and the
password (or for some authentication methods the digest of the password). If the
password is correct and the user is allowed to see the page, the page is returned in the
next reply from the server. HTTP is a stateless protocol (requests are handled
independently), so the server does not keep track of the fact that the user already
authenticated. Therefore the browser automatically includes the Authorization: header
line with the user credentials in all subsequent requests to the site until it is closed. There
is no explicit log-out action.

HTTP cookies can be used for many purposes, including confirming user identity. With
any reply the server can include a header line of the form Set-cookie: name=value. In
response the browser stores the cookie and includes in every future request to the site that
sent the cookie a header line of the form Cookie: name=value. Cookies have an
expiration time, they can be explicitly destroyed by the web site that created them, and
there are options controlling whether they persist after the browser is closed. Even though
there are limits to how large browsers allow the cookies to be, they can be useful not just
in authentication, but also in storing user preferences, implementing a shopping cart and
other artifacts that require state at the browser and in tracking user behavior. Depending
on your point if view (user or site interested in understanding user behavior) this can be a
good or a bad thing.

We will discuss the privacy implications of cookies in more detail in the last segment of
the course. In the same segment we will also discuss HTTP headers used by various
techniques for improving the performance of web transfers.

Cristian Estan and Perry Kivolowitz, last updated on 9/12/2007 5/5

	Lecture 5 – HTTP
	Structure of HTTP interactions
	HTTP requests
	HTTP replies
	HTTP header lines used for authentication

